Deep Papers
Deep Papers is a podcast series featuring deep dives on today’s most important AI papers and research. Hosted by Arize AI founders and engineers, each episode profiles the people and techniques behind cutting-edge breakthroughs in machine learning.
Deep Papers
Explaining Grokking Through Circuit Efficiency
Join Arize Co-Founder & CEO Jason Lopatecki, and ML Solutions Engineer, Sally-Ann DeLucia, as they discuss “Explaining Grokking Through Circuit Efficiency." This paper explores novel predictions about grokking, providing significant evidence in favor of its explanation. Most strikingly, the research conducted in this paper demonstrates two novel and surprising behaviors: ungrokking, in which a network regresses from perfect to low test accuracy, and semi-grokking, in which a network shows delayed generalization to partial rather than perfect test accuracy.
Find the transcript and more here: https://arize.com/blog/explaining-grokking-through-circuit-efficiency-paper-reading/
To learn more about ML observability, join the Arize AI Slack community or get the latest on our LinkedIn and Twitter.