Deep Papers
Deep Papers is a podcast series featuring deep dives on today’s most important AI papers and research. Hosted by Arize AI founders and engineers, each episode profiles the people and techniques behind cutting-edge breakthroughs in machine learning.
Deep Papers
Reinforcement Learning in the Era of LLMs
We’re exploring Reinforcement Learning in the Era of LLMs this week with Claire Longo, Arize’s Head of Customer Success. Recent advancements in Large Language Models (LLMs) have garnered wide attention and led to successful products such as ChatGPT and GPT-4. Their proficiency in adhering to instructions and delivering harmless, helpful, and honest (3H) responses can largely be attributed to the technique of Reinforcement Learning from Human Feedback (RLHF). This week’s paper, aims to link the research in conventional RL to RL techniques used in LLM research and demystify this technique by discussing why, when, and how RL excels.
To learn more about ML observability, join the Arize AI Slack community or get the latest on our LinkedIn and Twitter.